Multiplication is just grouping of objects:

\[3(4) = 3 + 3 + 3 + 3 \]
\[= 4 + 4 + 4 \]
\[= 12 \]

"Three times four"
"Four times three"

Exponents are the same thing. Instead of addition, it's multiplication:

\[3^4 = (3 \cdot 3 \cdot 3 \cdot 3) \]
\[= 81 \]

\[-3^2 = -3 \cdot -3 \]
\[(-3)^2 = (-3)(-3) \]
\[= 9 \]

\[-(-3)^2 = -(-3)(-3) \]
\[= -9 \]

\[-3^4 = -(3)(3) \]
\[= -81 \]

\[-(3)^2 = -(3)(3) \]
\[= -9 \]
The parts of an exponent (any number, variable or math "thing", actually).

1) \(2^5 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 32 \)

2) \((6.5)^2 = (6.5)(6.5) = 42.25 \)

3) \(\left(\frac{4}{3}\right)^3 = \left(\frac{4}{3}\right)\left(\frac{4}{3}\right)\left(\frac{4}{3}\right) = \frac{4 \cdot 4 \cdot 4}{3 \cdot 3 \cdot 3} = \frac{64}{27} \)

\[= 2 \frac{10}{27} \]

4) \(\frac{4}{3} = \frac{4(4)}{3(3)} = \frac{16}{9} = 5 \frac{1}{3} \)

5) \(\frac{4^3}{3^3} = \frac{4(4)(4)}{3(3)(3)} = \frac{16}{27} \)