Lesson 8 (4.1) – Solving Simple Equations

An expression is ____________________________

An equation is ____________________________

A solution is ____________________________

To ______ an equation means to __________ the variable. When isolating a variable in an equation, you move ______ over the equal sign by using __________ operations.

Example 1: Solve (remember: isolate the variable) and check (substitute solution into equation)

a) \(x + 3 = 10 \)

b) \(2m = 16 \)
Try: Solve

a) \(x + 4 = 9 \)

 b) \(-9p = 81 \)

\[\frac{1}{3}x = -3 \]
\[\frac{1}{4} = m - \frac{3}{4} \]

c) \(\frac{1}{3}x = -3 \)

 d) \(\frac{1}{4} = m - \frac{3}{4} \)

To solve two-step equations:

 • Isolate the term with the variable
 • Isolate the variable

Example 2: Solve and check.

a) \(5x + 2 = 17 \)

 b) \(8 - 2b = 11 \)

Try: Solve and check

\(7x - 5 = 16 \)
Example 3: Solve and check

a) \(\frac{x}{3} + 4 = 10 \)

b) \(4(x - 3) = 15 \)

A “Let Statement” is: ___

Modeling with Equations

A dance studio director is given $3025 to buy recital costumes for the Saturday morning pre-ballet classes. If each costume costs approximately $40, how many students can she outfit?

a) Write an equation that models the number of costumes she can buy.

b) Solve the equation and write a conclusion to the problem.